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Abstract

Transcription factors are key regulatory proteins in gene expression control, and transcription factor binding sites are specific locations where transcription
factors uniquely recognize DNA sequences. Transcription factor binding sites can be detected through various experimental methods, but can also be
predicted computationally. However, experimental methods are often expensive and time-consuming, which is why computational predictions of
transcription factor binding sites have rapidly developed over the past few decades. Recently, with the advancement of deep learning technologies, the
accuracy of predicting transcription factor binding sites has significantly improved. In this article, we review the key computational methods for identifying
transcription factor binding sites developed over the decades, the databases used, and perform experimental evaluations of selected algorithms. We also

discuss the future prospects and directions of this field.
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1 Introduction

Transcription factors are proteins within cells whose main function is to regulate gene expression. They do
this by recognizing and binding to specific DNA sequences through their DNA-binding domains, such as
zinc fingers, helix-turn-helix, and leucine zippers. These sequences, generally 5 to 20 nucleotides long, are
known as transcription factor binding sites[1,2]. Besides the DNA-binding domain, transcription factors
also contain transcription regulatory domains, which can activate or inhibit gene expression. These
functions allow transcription factors to play a crucial role in cellular communication networks and respond
to various biological signals during processes like cell proliferation and differentiation[3].

Transcription factor binding sites are typically found in the promoter regions of genes but can also exist
in enhancers and silencers. These sites consist of short, specific nucleotide sequences known as motifs,
which are highly conserved and determine the binding affinity and specificity of transcription factors. Each
transcription factor usually recognizes a specific motif, using it to locate the correct DNA regions[4,5]. By
interacting with the DNA-binding domains of transcription factors, these motifs regulate gene expression.
This interaction can directly regulate the activity of nearby genes or indirectly by affecting chromatin
structure, allowing cells to adapt to various physiological and environmental changes.

The main experimental methods for studying transcription factor binding sites encompass a variety of
techniques, each tailored to specific research needs. Electrophoretic mobility shift assays (EMSA) provide
an intuitive way to observe the interaction between transcription factors and DNA. Chromatin
immunoprecipitation (ChIP) and its derivative technique, ChIP-Seq, utilize specific antibodies to capture
transcription factor-DNA complexes and identify their precise locations at the cellular level through
high-throughput sequencing. DNA footprinting techniques use DNase | enzymes to reveal areas of DNA
protected by proteins, thereby accurately mapping the binding sites of transcription factors. Reporter gene
analysis evaluates the impact of specific DNA sequences on reporter gene expression to assess the
regulatory activity of transcription factors. Finally, the SELEX technique involves screening a vast array of
random sequences to identify DNA sequences that have high affinity for specific transcription factors[6-9].
These methods each have their unique characteristics and are often used in combination to thoroughly
analyze and deeply understand how transcription factors regulate gene expression, revealing their role in
cellular functions.

Due to the high cost, lengthy timeframes, and technical complexity of experimental methods for
determining transcription factor binding sites, computational methods have been developed for prediction.
Early attempts to use computational approaches for predicting protein-DNA interactions include the use of
simple machine learning algorithms, like the perceptron, by Stormo and others to analyze and predict
translation initiation sites in E. coli[10-14]. This marked an important shift from laboratory experiments to
computational predictions, laying the groundwork for later predictions of transcription factor binding sites.

Over the past decades, computational methods for predicting transcription factor binding sites have
evolved significantly. From initial statistical learning methods like position-specific scoring matrices
(PSSM) and consensus sequences[15,16], which assume that each base in the genome independently
contributes to binding, to the use of machine learning techniques that can efficiently handle large datasets
and identify patterns, speeding up research and improving prediction accuracy. The advent and
development of deep learning techniques have significantly enhanced the accuracy and efficiency of
predictions for transcription factor binding sites. Deep learning models automate the process of learning



sequence motifs and complex internal connections at binding sites, not only improving prediction accuracy
but also revealing previously unknown DNA sequence regulatory features, such as chromatin structure and
DNA shape.

This paper's main contributions are as follows: (1) Classifying transcription factor binding site
prediction algorithms based on the technology used, introducing the development of algorithms over time
within each major category, and discussing the advantages and disadvantages of each algorithm. (2)
Introducing the basic databases used. (3) Drawing conclusions about the content of the paper and
discussing the future development directions and challenges of transcription factor binding site prediction.

2 Methods for Predicting TF Binding Sites

2.1 Traditional Statistical Learning Methods

In recent decades, there has been substantial advancement and widespread progress in traditional statistical
learning techniques used to predict transcription factor binding sites (TFBS). The primary approaches
employed in this study encompass consensus sequences, position-specific scoring matrices (PSSM), and
methodologies that compute the mean number of nucleotide matches between a probable site and all
established sites[17]. Despite the existence of research indicating interdependent effects between bases,
these foundational methods are based on the assumption that each base pair's contribution to binding is
independent. Despite this assumption, they provide a natural extension by considering pairwise nucleotide
dependencies and per-position information content.

The initial statistical learning methods, although demonstrated to be practical and offering a satisfactory
estimation of the energetics involved in DNA-protein binding, have the potential for further enhancement
through the incorporation of pairwise correlations and the utilization of information content at each site.
The utilization of pairwise correlations and information content has demonstrated its utility in the
representation and visualization of binding sites, as well as in the identification of motifs. The principles
introduced in Matlnspector and MATCHTM were subsequently employed to improve the accuracy of
predictions, with a particular focus on differentiating between conserved and non-conserved sections
within sequences[18,19].

Over the course of time, tools such as COTRASIF and TFinder were created, which integrate position
weight matrix search techniques and hidden Markov models, providing search interfaces that are easy for
users to navigate[20,21]. Phylogenetic footprinting approaches have become more popular because to the
growing availability of whole-genome data and improved computing capabilities. These methodologies
facilitate the identification of functional elements through the comparison of conserved non-coding DNA
sequences across several species, hence opening up novel avenues for the detection of regulatory elements
that span multiple species[22].

To summarize, the progression from using traditional statistical techniques such as consensus sequences
and PSSM to more advanced methods that take into account nucleotide interdependencies and information
content, and ultimately to whole-genome analysis using phylogenetic footprinting, has greatly enhanced
the accuracy of predictions and created new opportunities for identifying regulatory elements across
different species. Notwithstanding advancements, disparities in experimental validation underscore the



significance of additional verification, indicating potential avenues for future research. These include
exploring the optimal integration of conventional statistical learning approaches with contemporary
machine learning and deep learning methodologies to elucidate intricate gene regulatory networks.

2.2 Machine Learning Methods

Comprehending the mechanism by which transcription factors identify and attach to particular DNA
sequences is of utmost importance in contemporary biology, as it directly impacts the regulation of genes.
The proliferation of biological data has led to a significant rise in the time and cost associated with
conventional experimental methods, hence necessitating the exploration of more efficient alternatives.
Machine learning technology has emerged as a potent tool for the prediction of transcription factor binding
sites (TFBS) due to its capacity to effectively process large volumes of data and identify recurring trends.
These strategies have the dual effect of expediting the research process and improving the accuracy of
predictions, so providing novel avenues for uncovering the mechanisms behind gene expression control.
The following will introduce key machine learning algorithms used in recent years for TFBS prediction
and their development.

Machine learning techniques have made substantial advancements in the domain of TFBS prediction in
recent years. The gkmSVM approach, introduced in 2016, greatly improved prediction efficiency and
accuracy by utilizing an upgraded gap k-mer support vector machine classifier[23]. This algorithm is
particularly effective in processing intricate regulatory DNA sequences. Mathelier's team subsequently
proposed a method that relies on DNA shape features. This method effectively enhanced prediction
accuracy by integrating DNA sequence information and shape features. This finding highlights the crucial
role of shape features in transcription factor recognition, extending beyond the scope of sequence
information[24]. The Mocap method was introduced in the same year, employing a sparse logistic
regression model to incorporate genomic characteristics and sequence context information. This approach
offers a robust tool for making predictions across various cell types and transcription factor
circumstances[25].

In 2017, the TEPIC method demonstrated its ability to accurately predict gene expression by integrating
transcription factor affinity and open chromatin signals. This achievement highlights the promise of
machine learning techniques in maintaining prediction accuracy while simultaneously reducing
experimental expenses[26]. The prediction accuracy and specificity of the DRAF algorithm were enhanced
in 2018 through the integration of physicochemical properties of transcription factor DNA binding
domains with target DNA sequence information. This integration was achieved by employing a random
forest model and highlighting the significance of biophysical properties in augmenting the performance of
machine learning models[27].

In 2019, the "Anchor" method shown notable advancements in enhancing the accuracy and
generalization capabilities of TFBS prediction. This progress was particularly evident in its ability to
effectively handle cell-type-specific information. These improvements were achieved by the integration of
a comprehensive feature set and precise preprocessing of DNase-seq data[28]. In the aforementioned year,
the TEPIC2 algorithm demonstrated its efficacy and precision as an analytical framework by including
epigenetic data with TFBS predictions. This advancement underscores the significance of epigenetic
information in enhancing TFBS predictions[29]. The Catchitt method demonstrated exceptional



performance in predicting cell-type-specific Transcription Factor Binding Sites (TFBS) by effectively
integrating features and employing advanced machine learning techniques[30]. It achieved joint first place
in the "ENCODE-DREAM in vivo Transcription Factor Binding Site Prediction Challenge."

Subsequently, machine learning techniques continued to advance, exemplified by the MEDEMO in
2020[31]. This advancement greatly improved the accuracy of TFBS prediction by using DNA methylation
data and capturing intramotif relationships. The accuracy of plant TFBS predictions was greatly enhanced
by the Wimtrap technique by 2022 by the integration of ChIP-seq data and diverse genomic
characteristics[32]. Additionally, the model's transferability across numerous transcription factors, organs,
and species was tested. In 2023, MachineTFBS made notable advancements in enhancing the accuracy of
TFBS predictions in yeast promoter regions. This was achieved through the utilization of personalized
model selection, which involved selecting the most suitable machine learning model and feature
combination for each specific transcription factor dataset[33]. The findings of this study highlight the
potential of personalized model selection in improving prediction accuracy.

The utilization of machine learning in TFBS prediction has demonstrated significant promise and a wide
range of applications. Through the utilization of sophisticated algorithms and the integration of diverse
biological data, scholars have successfully identified patterns within the intricate nature of gene regulation
processes and made predictions regarding the specific locations where transcription factors exert their
effects inside the genome[34-36]. Each methodology has demonstrated its respective merits in distinct
domains, including the efficacy of gkmSVM and Mocap in handling intricate sequence data, the ingenuity
of TEPIC and DRAF in amalgamating transcription factor affinity and biophysical characteristics, and the
advancements of "Anchor" and TEPIC2 in integrating DNase-seq data and epigenetic information to
augment the precision of predictions. Significantly, throughout time, there has been a growing emphasis on
enhancing accuracy, algorithm generalization capabilities, data utilization, and computing efficiency in
machine learning approaches for TFBS prediction. The Catchitt algorithm's triumph in global competitions
has demonstrated the sophisticated capabilities of machine learning methods in integrating features and
designing models. MEDEMO has underscored the significance of epigenetic data in improving prediction
accuracy by taking into account the influence of DNA methylation. Additionally, Wimtrap and
MachineTFBS have achieved noteworthy outcomes in predicting plant genome and yeast promoter regions,
highlighting the potential and difficulties associated with cross-species and cross-cell type predictions.

In conclusion, machine learning techniques have become essential instruments in the field of TFBS
prediction research, consistently advancing to accommodate the intricacy and abundance of biological data.
It is anticipated that future investigations will delve into novel machine learning models and
methodologies in order to enhance the precision, effectiveness, and comprehensibility of predictions. This
will contribute to a more profound comprehension of the intricate mechanisms behind gene regulation
networks.

2.3 Deep Learning Methods

2.3.1 Deep Learning Methods without Pre-training Phase

In transcription factor binding site (TFBS) prediction research, the introduction of deep learning
technology has shown significant progress and potential. With the development of various deep learning
models, these technologies have demonstrated exceptional abilities in capturing complex DNA and RNA



sequence patterns as well as cell-specific information. Since 2015, for example, the DEEP algorithm
significantly improved enhancer prediction accuracy by integrating multiple types of biological data,
showcasing its ability to capture enhancer activity under varying cell conditions[37]. That same year, the
DeepBind algorithm used deep learning to automatically learn patterns in DNA sequences, significantly
enhancing the prediction accuracy of sequence specificity for binding proteins, although its model
interpretability still needs improvement[38]. Following this, the DeepSEA model used large-scale
chromatin profiling data to predict the effects of non-coding variations at single-nucleotide resolution,
demonstrating higher prediction performance than traditional methods like gkm-SVM[39]. By 2016, the
PEDLA and DeMo algorithms integrated more heterogeneous data and used deep network architectures,
not only improving consistency in predictions across cell types but also achieving higher accuracy and
better model interpretability in TFBS prediction tasks[40]. Additionally, the Leopard algorithm, with its
multi-to-multi neural network architecture, surpassed traditional methods like Anchor and FactorNet,
achieving significant performance improvements in TFBS prediction, particularly in cell-type-specific
predictions, contributing significantly to the advancement of TFBS prediction technology and
understanding of gene regulatory networks.

2016 marked a significant developmental milestone for deep learning in the TFBS prediction field, with
numerous innovative algorithms such as DeepBind, DanQ, DeepSEA, Basset, and its evolved version
Basenji, significantly enhancing prediction accuracy. Building on DeepBind, DanQ introduced
convolutional neural networks (CNN) and bidirectional long short-term memory networks (BiLSTM),
further enhancing the model's ability to capture regulatory motifs and their long-distance dependencies in
sequences[41]. Following closely, Basset, by utilizing deep convolutional networks, not only enhanced the
prediction performance for transcription factor binding sites but also made breakthroughs in predicting
cell-specific DNA accessibility[42-45].

Entering 2017, Basenji, as an evolution of Basset, through extending the processed sequence length and
introducing dilated convolution techniques, captured distal regulatory elements and predicted gene
expression features more finely, marking a gradual conquest of more complex biological problems[46-48].
Basenji's improvements, especially in enhancing the resolution of distal regulatory elements, demonstrated
the ongoing evolution of deep learning in the biological prediction domain. Deep learning technology
continued to evolve, bringing new algorithms such as CKN-seq, KEGRU, and DECRES, which through
integrating various computational strategies and neural network technologies, further enhanced learning
efficiency, stability, and prediction performance[49-51]. Although these algorithms face challenges in
computational resource consumption, data dependency, and model interpretability, future research
directions include simplifying model structures, optimizing computational efficiency, and enhancing
generalizability to achieve higher application value and practicality.

In 2019, deep learning applications in the TFBS prediction field were further strengthened and
innovated, leading to significant technological developments. WSCNN, by introducing multi-instance
learning and considering reverse complementary sequences, effectively utilized weakly supervised
information in DNA sequences, improving prediction accuracy and efficiency[52]. MTTFsite, by
combining a multi-task learning framework and deep learning technology, significantly improved
cross-cell type predictions of transcription factor binding sites, especially by effectively integrating shared
and cell-type-specific biological characteristics[53]. The HOCNN algorithm, by introducing high-order



encoding and multi-scale convolution layers, effectively captured complex dependencies between
nucleotides and different scale motifs, significantly enhancing TFBS prediction performance. However,
the model's parameter count exponentially increased with the degree of complexity, leading to overfitting
and reduced computational efficiency[54]. To overcome these challenges, future improvement directions
include developing effective parameter management techniques and exploring coding methods that
balance sequence representation richness with computational feasibility. That same year, the DESSO
algorithm integrated DNA sequence and shape information, achieving high accuracy in predicting
transcription factor binding patterns through deep neural networks, surpassing existing tools like
DeepBind[55]. Despite high computational resource demands and insufficient model interpretability.
Additionally, circular filters architecture introduced filters in convolutional neural networks capable of
capturing cyclically arranged variants in sequences, not only enhancing prediction accuracy and data
utilization efficiency but also improving model interpretability[56-60]. Facing increased computational
complexity and the need for hyperparameter tuning, future directions include exploring more efficient
computational methods and automating hyperparameter optimization.

Entering 2020, the DeepSite algorithm, with its innovative network architecture, made significant
progress in predicting transcription factor binding sites[61]. Concurrently, TBiNet, by integrating attention
mechanisms, not only enhanced the accuracy of transcription factor-DNA binding site predictions but also
increased the model's interpretability[62]. In 2021, the Attention-Enhanced Convolutional Neural Network
(ACNN) by incorporating attention mechanisms captured global and local information in DNA sequences,
significantly improving cross-cell type prediction performance[63]. Additionally, eDeepCNN, by merging
DNA sequence and shape information and employing a spatial alignment strategy, significantly enhanced
prediction accuracy. Facing high computational complexity and reliance on high-quality data, future
directions may include optimizing model structures to reduce computational burdens[64].

In 2021, the field of TFBS prediction witnessed breakthroughs in multiple algorithms, including
HSEDC, AgentBind, BPNet, DLBSS, DeepATT, and DeepD2V, each significantly enhancing prediction
performance and computational efficiency[65-70]. HSEDC innovatively merged DNA sequence and shape
information through spatial alignment and used multi-layer convolutional neural networks and embedding
strategies to significantly enhance prediction accuracy. Although this method depends on high-quality
DNA shape information and substantial computational resources, it highlighted how model simplification
and data augmentation could further optimize generalizability and handle heterogeneous data distributions.
AgentBind combined pre-training and fine-tuning strategies of deep learning models with model
interpretation technologies like Grad-CAM, not only enhancing model prediction accuracy but also its
interpretability. Facing challenges in pre-training data selection and high computational resource demands,
AgentBind demonstrated the necessity for future enhancements in model architecture to reduce resource
consumption, expand and diversify pre-training datasets, and develop more advanced model interpretation
tools. BPNet, with its deep convolutional neural network architecture, made significant advancements in
the precision and resolution of TFBS predictions, directly predicting transcription factor binding profiles
from DNA sequences and using model interpretation tools to reveal complex rules of transcription factor
binding. Although BPNet made significant progress, its dependence on high-quality data and high
computational resource demands are issues that need future resolution. DLBSS, by combining deep
learning with an integrated analysis of DNA sequence and shape features, enhanced prediction accuracy,



especially through a shared convolutional neural network model that effectively captured common patterns
between sequences and shapes. DeepATT, by merging convolutional and recurrent neural networks and
introducing a category attention layer, significantly enhanced the prediction accuracy of DNA sequence
functional effects. Moreover, DeepD2V, by introducing dna2vec's k-mer distributed representation and
considering various variants of DNA sequences, along with a hybrid model architecture combining
convolutional and bidirectional long short-term memory networks, achieved significant improvements in
performance. Facing challenges in handling sequences of varying lengths and not fully utilizing biological
information beyond sequence data, DeepD2V looked forward to developing feature extraction algorithms
adapted to variable-length sequences and integrating more types of biological features.

In the field of TFBS prediction, significant scientific progress was made in 2021, with multiple
algorithms significantly enhancing prediction accuracy and efficiency through innovative deep learning
architectures. The CRPTS algorithm, by combining CNNs and RNNs, along with the fusion of DNA
sequence and shape features, enhanced prediction performance[71]. Concurrently, the Multi-Scale Capsule
Network (MSC) by combining convolutional and capsule networks, improved the capability to capture
sequences of various lengths, although it had high computational demands[72]. The Fully Convolutional
Network (FCNA), through a fully convolutional architecture, achieved precise TFBS predictions at the
nucleotide level, highlighting the need for improved data imbalance handling strategies[73]. Additionally,
SAResNet, by integrating self-attention mechanisms and residual networks, improved long-distance
sequence dependency handling and model convergence speed, showcasing potential directions for
optimizing model adaptability and interpretability[74]. CAE-CNN, by combining a convolutional
autoencoder with a CNN, reduced the impact of negative sample noise and accelerated the training process
through unsupervised pre-training, despite issues with model interpretability and data dependency[75-77].

In TFBS prediction research, although multiple algorithms demonstrated excellent performance, they
also revealed several key areas for improvement. First, computational efficiency is a common concern,
especially for algorithms employing complex neural network structures, such as the Multi-Scale Capsule
Network (MSC) and the Fully Convolutional Network (FCNA). Future research might explore more
efficient network architectures and algorithm simplification strategies, for instance, by using pruning
techniques to reduce unnecessary computations and parameters, or by leveraging the latest hardware
acceleration technologies to enhance computational speed. Second, model interpretability is a significant
challenge for deep learning applications in bioinformatics. While some algorithms, such as AgentBind and
SAResNet, have begun to integrate model interpretation tools like Grad-CAM and self-attention
mechanisms to reveal the biological principles behind model decisions, these methods still require further
improvement. Future research could develop new interpretability methods, for example, by integrating
more interpretable machine learning technologies or developing new visualization tools to help researchers
better understand and validate the biological significance of model predictions. Additionally, data
dependency is an issue faced by many high-performance algorithms. The performance of these algorithms
typically relies heavily on the quality and quantity of training data, which limits the models'
generalizability. To address this issue, future research might employ multi-task learning, transfer learning,
or data augmentation techniques to enhance the robustness and generalizability of models. For instance,by
training models to recognize transcription factor binding sites under various biological conditions or by
using synthetic data augmentation techniques to expand the diversity of training samples.



Researchers are gradually optimizing deep learning models to meet the complex demands of TFBS
prediction. For example, the D-SSCA model, by combining DNA sequence and shape information and
utilizing attention mechanisms, effectively enhanced prediction accuracy[78]. This integration strategy not
only improved model performance but also enhanced its interpretability, allowing researchers to better
understand the biological mechanisms behind the predictions. However, this model and similar ones like
DeepARC and GHTNet, typically depend heavily on high-quality training data and consume substantial
computational resources. To address these challenges, the research community is exploring how to reduce
these dependencies through algorithm optimization and data handling strategies[79,80]. For instance,
MAResNet, by introducing multi-scale attention mechanisms and residual networks, effectively enhanced
the model's generalizability across different biological samples[81]. Additionally, the development of
PCLAtt and TranAtt models, by combining CNNs, BiLSTMs, and attention mechanisms, emphasized the
balance between model interpretability and computational efficiency[82]. As the demand for model
generalizability and interpretability increases, future research trends might include further model
lightweighting and the adoption of multi-task learning and transfer learning strategies. These strategies not
only facilitate the application of models in various biological environments but also, through data
augmentation and multimodal learning methods like those demonstrated by DeepGenBind, handle more
complex data types, thereby enhancing the robustness and application range of models[83]. Additionally,
as single-cell sequencing technology advances, as demonstrated by the STAPLE model, the processing and
analysis of single-cell data have become a new research hotspot for deep learning in TFBS prediction[84].
The sparsity and complexity of these data require models not only to have efficient computational
capabilities but also to be able to extract useful information from extremely limited data.

In 2022, the U-TransNet model employed meta-learning strategies and U-Net architecture, combined
with various chromatin features, to predict how variations affect TF-DNA binding[85]. This method
excelled in predicting the cell-type-specific effects of models, but the complexity of the model led to high
computational resource demands. Following this, the DSAC model, by integrating self-attention
mechanisms and a dual-branch CNN architecture, achieved complementary extraction of global
information and local features, significantly enhancing the accuracy of TFBS predictions[86].Subsequently,
DeepSTF, by combining DNA sequence and shape information and using an improved Transformer
encoder and CNN-BiLSTM structure, enhanced the accuracy and interpretability of predictions[87]. This
demonstrated the potential of combining advanced encoding technologies with classic neural network
elements. However, the high computational resource demands and complexity of DeepSTF may limit its
widespread application. Therefore, future research might explore further optimization of the model
structure to reduce resource demands and enhance model interpretability.

In 2023, the TFBSnet model, by combining CNNs and Selective Kernel Networks (SKNet), utilized
diverse feature data from DNA sequences to enhance prediction accuracy. Although this method
demonstrated excellent performance in predicting TFBS in human and plant cells, the high demand for
computational resources and the complexity of the model, as well as issues with interpretability, indicate
directions for future improvements, including optimizing the model structure to reduce resource demands,
enhancing model interpretability, and exploring more biological factors to improve the generalizability of
predictions[88-90]. TBCA, by combining convolutional and lightweight attention mechanisms, along with
Fourier-transform-enhanced multi-head attention and channel attention, significantly enhanced the



accuracy and interpretability of DNA sequence-based TFBS predictions[91].

In 2024, the NLDNN model, by developing a nucleotide-level deep neural network architecture and
using an adversarial training framework, significantly enhanced the predictive performance of
cross-species TFBS, especially by directly predicting experimental coverage values as a nucleotide-level
regression task, enhancing the model's detail-level prediction capabilities. However, NLDNN faces
challenges including high demands for computational resources and model complexity, which may limit its
application in resource-constrained environments. Future directions for improvement might include further
optimization of the model structure to reduce computational costs, enhance model interpretability, and
integrate more biological information to enhance the generalizability of predictions[92-94].

2.3.2 Deep Learning Methods Based on Pre-trained Large Language Models

Recent advancements in the field of transcription factor binding site (TFBS) prediction have greatly
improved performance through the use of pre-trained models. The performance of promoter prediction and
transcription factor binding site prediction was significantly enhanced in 2022 with the implementation of
MoDNA. This approach integrated self-supervised pre-training and fine-tuning techniques, while also
adding DNA functional motifs as domain knowledge. This methodology demonstrates a higher degree of
precision in capturing crucial data inside DNA sequences, thereby enhancing the precision and
effectiveness of prognostications. Nevertheless, the intricate nature of the MoDNA model and its
substantial requirement for computational resources may restrict its utilization in situations with limited
resources. Potential future enhancements encompass the reduction of model weight and the augmentation
of model interpretability, alongside the investigation of incorporating more forms of biological data to
enhance the model's ability to generalize[95-97]. In the same year, the TFBert model shown notable
enhancements in prediction accuracy and efficiency. This was achieved through the implementation of
task-specific pre-training and the treatment of DNA sequence processing as a natural language processing
problem. Notably, the model exhibited exceptional performance in effectively managing small datasets.
Nevertheless, TFBert is presently limited to sequences of a specific length, and its capacity to be applied to
other sequences has yet to be confirmed. Potential areas for future enhancement encompass the
advancement of model architectures that possess the ability to handle sequences of diverse lengths, as well
as the comprehensive assessment of the model's generalizability by means of multi-source validation
datasets[98,99].

The DNABERT-Cap model, which integrates DNABERT with capsule networks, shown notable
enhancements in the accuracy of predicting transcription factor binding sites in 2023. This improvement
was particularly evident in the analysis of intricate DNA sequence data. However, there are still limitations
in the model's ability to adapt to different sequence lengths and generalize under various biological
conditions. This highlights the need for future improvements, such as the development of more flexible
models that can accommodate sequences of different lengths and the incorporation of additional biological
information to enhance predictive performance and the generalizability of the model[100].

In the same year, a study was conducted to enhance the precision of predicting transcription factor
binding sites by combining the biophysical features of DNA, such as DNA breathing dynamics, with DNA
sequence information using sequence transformers and cross-attention processes. This approach has
demonstrated significant efficacy in improving predictive accuracy. However, it faces certain obstacles



such as the substantial computational resources required, the limited interpretability of the model, and the
reliance on high-quality biophysical data. These challenges suggest potential avenues for future
enhancements in terms of optimizing computational efficiency, improving model interpretability, and
incorporating a wider range of biophysical properties[101].

The utilization of pre-trained big language models in deep learning methods offers novel insights and
strategies for predicting transcription factor binding locations. Subsequent investigations will persist in
examining the optimization of model structures, augmenting computing efficiency, expanding model
interpretability, and incorporating additional biological data to further enhance the precision, efficiency,
and extent of predictions. This progress not only holds the potential to drive the growth of technologies for
predicting transcription factor binding sites, but also offers valuable tools for comprehending intricate gene
regulatory mechanisms. With the growing accessibility of computer resources and the accumulation of
biological data, the potential applications of pre-trained models will broaden, hence presenting novel
opportunities for bioinformatics research and clinical applications. Furthermore, through the resolution of
obstacles related to the interpretability of models, these methodologies will additionally expedite the rate
and caliber of biological breakthroughs, thereby assisting researchers in acquiring more profound
understandings of biological processes and mechanisms behind diseases. In brief, the utilization of deep
learning techniques that rely on pre-trained extensive language models within the field of predicting
transcription factor binding sites represents a novel stage in the advancement of bioinformatics and
computational biology investigation.

3 Database for TFBS prediction

In the field of transcription factor binding site prediction, database resources can be categorized into two
main directions: "Transcriptional Regulation and Binding Specificity” and "Genomic Annotation and
Regulatory Networks." They display a clear progression from basic data levels to application levels,
providing researchers with comprehensive support from core data to in-depth analysis.

3.1 Transcriptional Regulation and Binding Specificity

In the domain of "Transcriptional Regulation and Binding Specificity," the TRANSFAC and JASPAR
foundational databases provide core data support for predicting transcription factor and DNA binding sites.
TRANSFAC contains details of over 4,300 regulatory sites and 1,500 transcription factors, offering 169
nucleotide distribution matrices covering both natural and artificial DNA elements and transcription factor
binding models[102]. JASPAR has added 329 new PFMs (Position Frequency Matrices) and
independently verified 72 models, improving model quality and introducing cutting algorithms and new
TFBS (Transcription Factor Binding Sites) extraction tools[103]. These resources deepen the
understanding of the interactions between transcription factors and DNA, enhancing the accuracy and
efficiency of transcriptional regulation research, and serve as the cornerstone for predicting transcription
factor binding sites, helping researchers understand the fundamental interactions between specific
transcription factors and DNA.Furthermore, Cis-BP and HOCOMOCO expand the understanding of
transcription factor binding characteristics[104,105]. Cis-BP utilizes similarity regression methods to
optimize the prediction of transcription factor binding models, covering 59,998 TFs. HOCOMOCO refines
the DNA binding models of 949 human and 720 mouse transcription factors by analyzing a large amount
of ChIP-Seq and HT-SELEX experimental data, providing a total of 1,443 validated position weight



matrices. The advancements in these databases offer experimentally validated and predictive models for
studying the DNA binding characteristics of transcription factors in multiple species, further enriching the
scientific resource pool.

At the level of experimental data and technical applications, ReMap, TFBSshape, and HTPSELEX
provide rich transcription factor binding site information, DNA shape feature analysis, and
high-throughput SELEX experimental data, respectively, deepening the understanding of transcriptional
regulatory mechanisms[106-108]. ReMap 2022 has updated its database, integrating over 11,000 datasets
across humans, mice, fruit flies, and Arabidopsis, showcasing an unprecedented collection of transcription
regulatory factor DNA binding regions and introducing Cis-regulatory module identification. TFBSshape
has expanded to 2,428 structural records, covering 1,900 transcription factors across 39 species, with each
entry including 13 shape features and four features of methylated DNA, offering a new perspective on
DNA shape features. HTPSELEX makes high-throughput SELEX experimental data public, supporting the
characterization of transcription factor binding specificity, including raw data and descriptions represented
by Hidden Markov Models. The combination of these databases provides researchers with richer and more
dynamic resources, promoting precise predictions of transcription factor binding sites and in-depth studies
of transcriptional regulatory mechanisms.

3.2 Genomic Annotation and Regulatory Networks

In the realm of "Genomic Annotation and Regulatory Networks," the ENCODE project plays a core role in
constructing functional maps of the genome, providing annotations of a wide range of regulatory elements
within the human genome at the basic data level. This includes annotations of genes and transcription
factor binding sites, as well as information on histone modifications, constructing a comprehensive map of
genome function for researchers. As a broad regulatory element annotation database, ENCODE contains
over 13,000 datasets and their accompanying metadata, covering a variety of organisms including humans,
mice, fruit flies, and C. elegans, with a total data volume exceeding S00TB. By offering standardized data
processing pipelines, the ENCODE project has promoted the standardization, unification, and
reproducibility of data processing, greatly enriching the resource pool for genomic science and providing a
solid foundation for genomic annotation and regulatory network analysis[109].

As research progresses, PlantRegMap and GENCODE provide refined annotation and regulatory
network analysis resources for plant and human/mouse genomes, respectively[110,111]. PlantRegMap,
using the FunTFBS algorithm and genomic conservation analysis, has identified over 20 million functional
transcription factor binding sites and 2 million interactions for 63 plant species, becoming a
comprehensive platform for plant transcriptional regulation analysis. GENCODE 2021 has enhanced the
annotation quality of human and mouse genomes, including special annotations for SARS-CoV-2 related
genes, supporting a wide range of genomic research. The advancements in PlantRegMap and GENCODE
not only provide specialized resources for genomic annotation and regulatory network analysis but also
push the application of bioinformatics in the fields of botany and human disease research, deepening our
understanding of the complexity of gene expression regulation and laying a solid foundation for future
biomedical research.

The UCSC Genome Browser and UniPROBE extend into the realms of technological application and
data analysis by providing visualization tools for genomic data and in vitro data on protein-DNA



interactions, respectively[112,113]. These tools support researchers in conducting more complex analyses
of gene regulatory networks and functional studies. The 2022 update of the UCSC Genome Browser
enhanced the visualization and analysis of genome annotations, introducing new databases and software
features such as updated clinical tracks, new track hubs, improved variant displays, and analysis tools for
the SARS-CoV-2 genome, making data comparison, analysis, and sharing more efficient and intuitive.
Meanwhile, the 2015 update to UniPROBE introduced new tools and content for PBM data, including 12
new publication datasets and PBM data involving 96 transcription factors, now hosting 515 unique
proteins and complexes, and streamlined the data submission process. These advancements not only
promote the in-depth utilization of genomic data but also provide new perspectives and experimental data
support for studies on gene regulation mechanisms.

This progression from basic to applied research in the field of transcription factor binding site prediction
database resources not only provides researchers with comprehensive support from core data to in-depth
analysis but also facilitates a deeper understanding of complex gene regulation mechanisms and advances
in disease mechanism research. As these databases continue to expand and update, and with the application
of new technologies, the future is expected to reveal more biological mysteries in the field of gene
expression regulation, providing a solid data foundation and theoretical support for the development of
precision medicine and disease treatment strategies[114-117]. These databases are not only valuable
resources for research on transcription factor binding site prediction but also important tools for advancing
life science research. Their progressive relationship and complementarity offer endless possibilities for the
exploration of genome science. With the rapid development of bioinformatics and computational biology,
the integration and innovative application of these database resources will continue to expand our
understanding of the complexity of life, leading biomedical research into a new era.

4 Discussion and conclusion

Significant technological advancements have been made in the field of transcription factor binding site
(TFBS) prediction over the last few decades. This trip started with an investigation into the basic
knowledge of gene regulatory processes and progressively developed into an extremely sophisticated and
technologically advanced field of study. To find transcription factors and their binding sites, scientists first
mostly used experimental techniques like Electrophoretic Mobility Shift Assays (EMSA). Even though
these experimental techniques at the time offered insightful information, they were frequently expensive,
time-consuming, and challenging to scale up to the genome level[118,119].

As computational biology and genomics advanced quickly, especially after the Human Genome Project
was finished, scientists started using computer programs to predict TFBS[120]. These techniques
attempted to find putative binding sites throughout the genome by utilizing genomic sequence data and
known transcription factor binding motifs. These computational methods were first mostly predicated on
conventional statistical learning methods, such as consensus sequence analysis and Position-Specific
Scoring Matrices (PSSM), which assumed that each base pair contributed independently to transcription
factor binding[121,122]. Early TFBS predictions were made possible by tools that took advantage of
consensus sequences and PSSM, such as MatInspector and MATCHTM. The ease of use and intuitiveness
of these techniques allowed early researchers to predict TFBS without the need for sophisticated
algorithms or big datasets. With the passage of time, scientists began investigating new paths for



cross-species conserved sequence comparisons using Phylogenetic Footprinting and tools like TFinder and
COTRASIF. These developments not only increased prediction accuracy but also created new avenues for
future investigation, particularly in the areas of comparative genomics and multi-species genome
annotation[123,124].

As we moved into the 21st century, machine learning techniques became increasingly popular in TFBS
prediction due to the explosion of biological data volume and the huge growth in processing capacity. The
efficiency and accuracy of predictions were greatly increased by these techniques, which could process
enormous datasets and identify intricate patterns. When processing regulatory sequence data, algorithms
like Support Vector Machines (SVM), Random Forest (RF), and Gradient Boosting Machines (GBM)
performed better. The TFBS prediction area saw a dramatic shift with the advent of machine learning. The
tremendous potential of machine learning in managing large volumes of biological data and complicated
pattern recognition was demonstrated by the development of techniques like gkmSVM, DNA shape
features, and Mocap[125-128]. These methods not only significantly improved prediction efficiency and
accuracy, but they also offered fresh insights into how transcription factors identify their binding sites by
taking into account more intricate biological details like DNA structure and sequence context. These
techniques still have issues with generalizability of algorithms, demands on computer resources, and data
quality despite their triumphs.

Deep learning technology has been used into TFBS prediction as a result of its revolutionary
advancements in a number of sectors in recent years. The capacity of deep learning techniques, particularly
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), to extract intricate and
hierarchical patterns from sequence data made them immensely valuable[129]. These techniques not only
increased prediction accuracy but also unveiled previously unknown DNA sequence regulatory
characteristics, such as chromatin structure and DNA shape. With the emergence of deep learning, TFBS
prediction achieved previously unheard-of efficiency and accuracy. The ability to predict TFBS at the
single-nucleotide level was enabled by deep learning techniques such as DeepBind, DeepSEA, and
Leopard, which discover intricate patterns from sequence data. The use of CNNs and RNNs in particular
greatly improved the predictive model's capacity to handle genomic data. But even with the great
performance gains, deep learning techniques have brought to light growing issues with large computing
costs and uninterpreted models.

According to recent studies, high-throughput technologies such as ChIP-exo and ChIP-nexus have
shown promise in increasing the accuracy of binding site identification; nevertheless, they are more
expensive and sophisticated than ChIP-seq. This problem highlights how important it is to weigh benefits
and costs when using new technologies[130,131]. Furthermore, despite potential redundancy with DNA
sequence information, investigating DNA shape features and epigenomic properties has shown their
usefulness in predicting TF-DNA interactions, suggesting a potential improvement in performance.

In order to improve model prediction accuracy and biological interpretability, future research should
concentrate more on integrating various types of genomic data, including but not limited to DNA sequence
information, chromatin accessibility, histone modifications, and even taking into consideration RNA
expression data. Additionally, researchers should investigate ways to overcome the difficulties caused by
inconsistent data quality and make efficient use of the enormous number of TF binding site databases that
are currently available to drive model training.



The TFBS prediction field is moving toward combining several computational approaches, improving
model interpretability and generalizability, and using multi-omics data to increase prediction accuracy as
genomics and computational biology progress. Even though TFBS prediction technologies have advanced
significantly, there are still many obstacles to overcome. These include improving model interpretability,
resolving problems with generalizing predictions across species and cell types, and incorporating
multi-omics data to increase biological relevance and prediction accuracy[132-133]. It is anticipated that
future studies will overcome the constraints of current methodologies by integrating and innovating
algorithms, so providing more insight into the molecular principles underlying intricate gene regulation
networks. In addition to advancing fundamental biological research, this will lay the scientific groundwork
for precision medicine and the treatment of diseases.
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